Abstract: Robot plays a vital part in making our lives more facile. The scope of this project is to provide a relation between human and machine by the interaction of human hand and robotic arm. The arm consists of five Degree of Freedom (DOF) and an end effectors, which allows the interaction with the real world. Now the obligations for the controller arise and along the way settled with the exploration of leap motion sensor.As earlier, robotic arm was controlled by the keypad or joystick which required a lot of practices and calculations to manipulate the robotic arm to reach desired position. The exploitation of the leap motion results in explicitly acquiring for hand gesture and provides set of points. PubDate: Fri, 31 Jan 2020 21:45:57 +000

Abstract: The objective of this research is to design a spaceframe chassis for light weight automobiles possessing unladen weight of ≤ 550Kg to replace the conventional monocoque type chassis frame. The maximum stress and maximum deflection that the chassis can resist without fracturing are important criteria. In this thesis, the existing monocoque chassis was considered and analyzed under static loading, frontal impact, side impact, rear impact, front rollover and side rollover loading conditions by using Finite Element Analysis method. Then, taking the test results as a reference, a spaceframe chassis was designed for the same size vehicle. The critical evaluation standard points stated in the Federal Motor Vehicle Safety Standard (FMVSS), U.S.A standard, were used as guideline to see the performance of the existing and the new chassis frames. The test results show that a space frame chassis has better stress resisting capacity and reliability than the conventional monocoque chassis frame under all impacts. PubDate: Fri, 31 Jan 2020 21:38:16 +000

Abstract: Modification of rigid body angular momentum permits controlled rotational maneuvers, and one common momentum-exchange actuator contains challenging mathematical singularities that occur when the actuator geometrically aligns perpendicularly to the commanded torque direction. Substantial research has arisen toward singularity avoidance, singularity escape (when avoidance fails), and singularity penetration which permits safe flight through regions of singularity. The latter two in particular, singularity escape and penetration require mathematical calculations of singular and near-singular quantities (very large numbers) using constituent numbers that are sometimes very small. This dichotomy leads to interesting peculiarities in some specific geometries. This short communication critically evaluates three often spoke postulates for defining singularity and the axioms that accompany the postulates. Researchers using disparate postulates arrive at contradictory conclusions about singularities, and we examine these peculiarities, leading to a few conclusions. Singular conditions must never be declared in the abstract without consideration for the commanded maneuver (e.g. the claim “the CMG system is singular”). Seeking the true angular momentum capability at near-planar skew angles, this research concludes that performance prediction is difficult installations at low skew angles should be avoided whenever permissible to enhance abilities of mathematical calculations. It will be shown that maximum momentum performance is easily predicted at very high and very low skew angles, and performance will be shown to be lowest at mid-values of skew angle. Meanwhile, maximum singularity-free performance remains elusive at even modestly low skew-angles. PubDate: Wed, 15 Jan 2020 19:19:00 +000

Abstract: This paper describes a development of a new structural type of continuously variable transmission (CVT). We here propose a CVT with linkages and irreversible mechanisms which does not positively depend upon frictional conduction force between conduction components. In the proposed CVT, four lever-crank units are connected in parallel mechanically with the cranks at an input shaft, and the output shaft is also connected mechanically via an irreversible mechanism installed at the fulcrum of the lever. In the experiment, we confirm that the continuous control of gear ratios in real time by realizing high-precision control for expansion and contraction of the links using electric linear actuators. As a merit of the developed linkage type of CVT, it reduces power consumption, compared to other conventional CVTs. PubDate: Mon, 02 Dec 2019 18:39:45 +000

Abstract: Eye movements are vitally important for living, survival and vision. A basic model of the eye, including ocular muscles, is considered that may be essential for better understanding the optical and sensory apparatus involved in vision, perception, and processing and control machinery of human movement. A state space model based on Newton-Euler formulation of the dynamics of the head and the eyeballs is presented that can be integrated with the dynamics of the skeletal system. The formulation allows integration of Lyapunov stability, hypothesized feedback mechanisms and inverse dynamics in more comprehensive neural processing models. Neural networks involved in saccades, gazes and dynamics of specific injuries, diseases and defects can be included in this formulation. The development allows a better understanding of the vision system as well as the neural and physiological elements involved in perception and physical and mental skills. It is also relevant to the design of artificial eyes. PubDate: Mon, 02 Dec 2019 18:00:03 +000